Artificial

mieiligence

Self-Supervised Hypergraph Transformer for Recommender Systems

Lianghao Xia University of Hong Kong Hong Kong, China aka_xia@foxmail.com

Chao Huang*
University of Hong Kong
Hong Kong, China
chaohuang75@gmail.com

Chuxu Zhang
Brandeis University
Waltham, USA
chuxuzhang@brandeis.edu

-KDD 2022

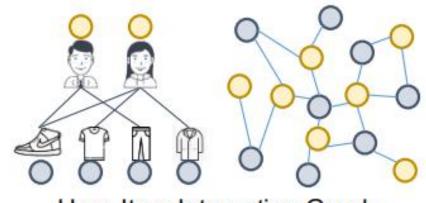
Code: https://github.com/akaxlh/SHT.

- 1.Introduction
- 2.Method
- 3. Experiments

Introduction

For example, users may click their uninterested products due to the over-recommendation of popular items(noise issue).

Data sparsity and skewed distaribution issue still stand in the way of effective user- item interaction modeling.



User-Item Interaction Graph

Method

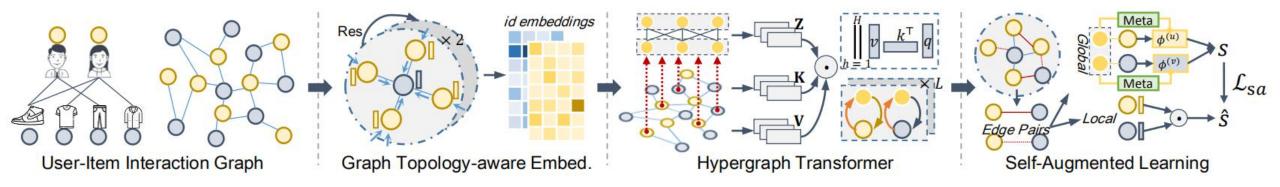
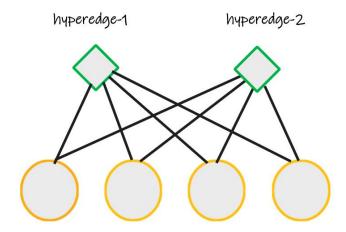


Figure 1: Overall framework of the proposed SHT model.



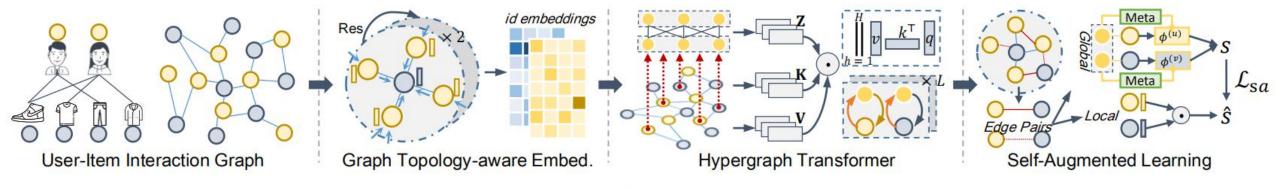


Figure 1: Overall framework of the proposed SHT model.

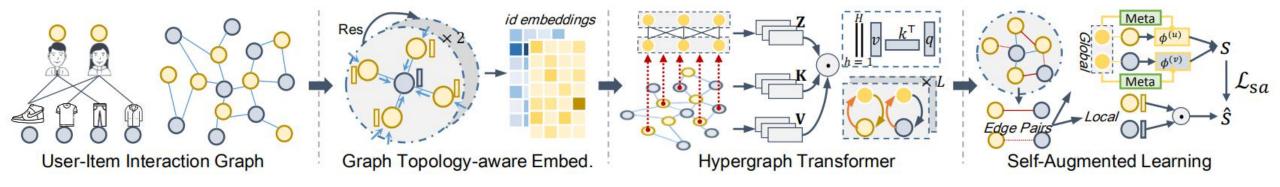
For user u_i and item v_j , embedding vectors $\mathbf{e}_i, \mathbf{e}_j \in \mathbb{R}^d$

$$\mathbf{E}^{(u)} \in \mathbb{R}^{I \times d}, \mathbf{E}^{(v)} \in \mathbb{R}^{J \times d}$$

$$\bar{\mathbf{E}}^{(u)} = GCN^{2}(\mathbf{E}^{(v)}, \mathcal{G}) = \bar{\mathcal{A}} \cdot \bar{\mathcal{A}}^{\top} \mathbf{E}^{(u)} + \bar{\mathcal{A}} \cdot \mathbf{E}^{(v)}$$
(1)
$$\bar{\mathbf{E}}^{(u)} \in \mathbb{R}^{I \times d}$$

$$\bar{\mathcal{A}}_{i,j} = \mathcal{A}_{i,j}/(\mathbf{D}_i^{(u)1/2}\mathbf{D}_j^{(v)1/2})$$
 $\bar{\mathcal{A}} \in \mathbb{R}^{I \times J}$

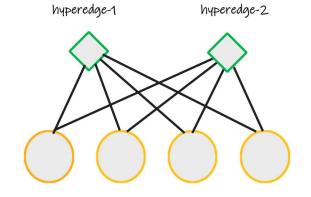
$$\tilde{\mathbf{e}}_i = \mathbf{e}_i + \bar{\mathbf{e}}_i; \quad \tilde{\mathbf{e}}_j = \mathbf{e}_j + \bar{\mathbf{e}}_j$$
 (2)



Node-to-Hyperedge Propagation.

$$\tilde{\mathbf{z}}_{k} = \prod_{h=1}^{H} \bar{\mathbf{z}}_{k,h}; \quad \bar{\mathbf{z}}_{k,h} = \sum_{i=1}^{I} \mathbf{v}_{i,h} \mathbf{k}_{i,h}^{\mathsf{T}} \mathbf{q}_{k,h}$$
(3)

 $\bar{\mathbf{z}}_{k,h} \in \mathbb{R}^{d/H}$



 $\tilde{\mathbf{z}}_k \in \mathbf{R}^d$ denotes the embedding for the k-th hyperedge.

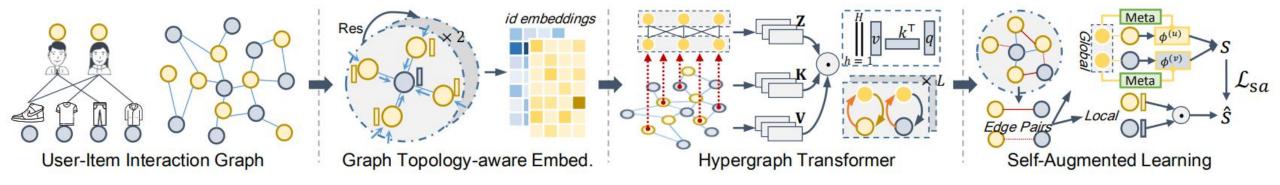
$$\mathbf{q}_{k,h} = \mathbf{Z}_{k,p_{h-1}:p_h}; \quad \mathbf{k}_{i,h} = \mathbf{K}_{p_{h-1}:p_h,:}\tilde{\mathbf{e}}_i; \quad \mathbf{v}_{i,h} = \mathbf{V}_{p_{h-1}:p_h,:}\tilde{\mathbf{e}}_i$$
 (4)

$$\mathbf{Z} \in \mathbb{R}^{K \times d}$$
 $\mathbf{K}, \mathbf{V} \in \mathbb{R}^{d \times d}$

$$\mathbf{q}_{k,h}, \mathbf{k}_{i,h}, \mathbf{v}_{i,h} \in \mathbb{R}^{d/H}$$

$$\hat{\mathbf{Z}} = \text{HHGN}^2(\tilde{\mathbf{Z}}); \quad \text{HHGN}(\mathbf{X}) = \sigma(\mathcal{H} \cdot \mathbf{X} + \mathbf{X})$$
 (5)

$$\hat{\mathbf{Z}}, \tilde{\mathbf{Z}} \in \mathbb{R}^{K \times d}$$
 $\hat{\mathbf{z}}, \tilde{\mathbf{z}} \in \mathbb{R}^d$,



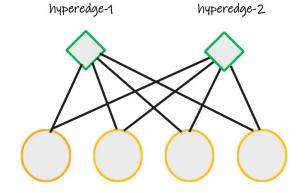
Hyperedge-to-Node Propagation

$$\tilde{\mathbf{e}}_{i}' = \prod_{h=1}^{H} \bar{\mathbf{e}}_{i,h}'; \quad \bar{\mathbf{e}}_{i,h}' = \sum_{k=1}^{K} \mathbf{v}_{k,h}' \mathbf{k'}_{k,h}^{\mathsf{T}} \mathbf{q}_{i,h}'$$
 (6)

$$\mathbf{q}'_{i,h} = \mathbf{k}_{i,h}; \quad \mathbf{k}'_{k,h} = \mathbf{q}_{k,h}; \quad \mathbf{v}'_{k,h} = \mathbf{V}_{p_{h-1}:p_h,:}\hat{\mathbf{z}}_k \tag{7}$$

$$\tilde{\mathbf{e}}_i' \in \mathbb{R}^d$$

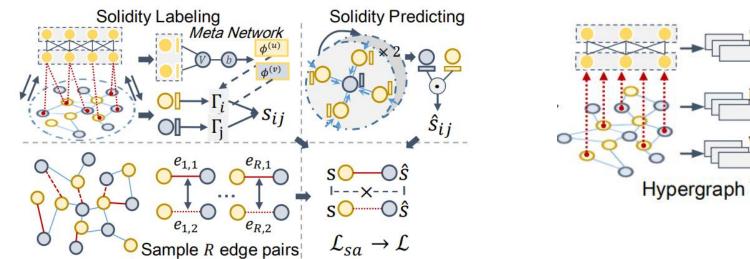
$$\mathbf{q}'_{i,h}, \mathbf{k}'_{k,h}, \mathbf{v}'_{k,h} \in \mathbb{R}^{d/H}$$



Iterative Hypergraph Propagation

$$\tilde{\mathbf{E}}_{l} = \text{HyperTrans}(\tilde{\mathbf{E}}_{l-1}); \quad \hat{\mathbf{E}} = \sum_{l=1}^{L} \tilde{\mathbf{E}}_{l}$$
 (8)

$$p_{i,j} = \hat{\mathbf{e}}_i^{(u)\top} \hat{\mathbf{e}}_j^{(v)}$$



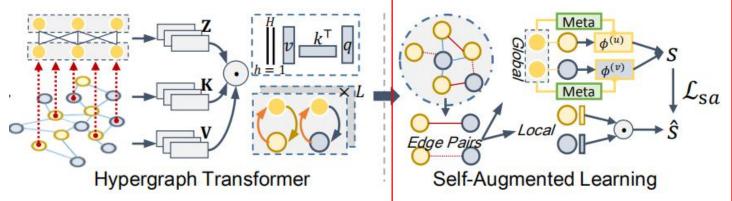


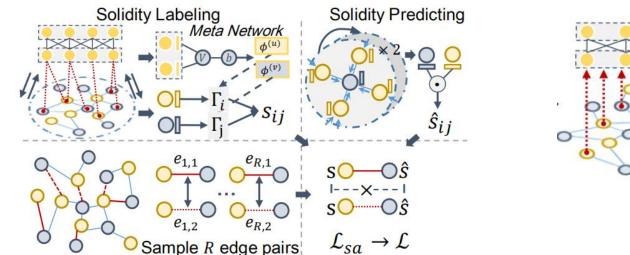
Figure 2: Workflow of the self-augmented learning.

$$\Gamma_{i} = \phi^{(u)} \begin{pmatrix} H \\ h = 1 \end{pmatrix}; \quad \Gamma_{j} = \phi^{(v)} \begin{pmatrix} H \\ h = 1 \end{pmatrix}$$
(9)
$$\phi(\mathbf{x}; \mathbf{Z}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b}); \quad \mathbf{W} = \mathbf{V}_{1}\bar{\mathbf{z}} + \mathbf{W}_{0}; \quad \mathbf{b} = \mathbf{V}_{2}\bar{\mathbf{z}} + \mathbf{b}_{0}$$
(10) $\bar{\mathbf{z}} \in \mathbb{R}^{d}$

$$\bar{\mathbf{z}} = \sum_{k=1}^{K} \mathbf{z}_{k} / K, \quad \mathbf{V}_{1} \in \mathbb{R}^{d \times d \times d}, \mathbf{W}_{0} \in \mathbb{R}^{d \times d}, \mathbf{V}_{2} \in \mathbb{R}^{d \times d}, \mathbf{b}_{0} \in \mathbb{R}^{d}$$

$$s_{i,j} = \operatorname{sigm}(\mathbf{d}^{\top} \cdot \sigma(\mathbf{T} \cdot [\Gamma_{i}; \Gamma_{j}] + \Gamma_{i} + \Gamma_{j} + \mathbf{c}))$$
(11)

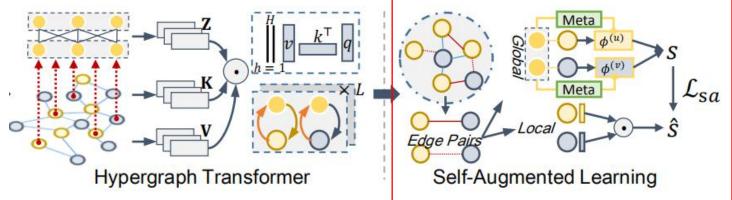
 $\mathbf{d} \in \mathbb{R}^d, \mathbf{T} \in \mathbb{R}^{d \times 2d}, \mathbf{c} \in \mathbb{R}^d$



training labels. In particular, R pairs of edges $\{(e_{1,1}, e_{1,2}),...,(e_{R,1}, e_{R,2})\}$ from the observed edges in G are sampled, and SHT gives predictions on the solidity using the topology-aware embeddings. The

$$\mathcal{L}_{sa} = \sum_{r=1}^{R} \max(0, 1 - (\hat{s}_{u_{r,1}, v_{r,1}} - \hat{s}_{u_{r,2}, v_{r,2}}) (s_{u_{r,1}, v_{r,1}} - s_{u_{r,2}, v_{r,2}}));$$

$$\hat{s}_{u_{r,1}, v_{r,1}} = \mathbf{e}_{u_{r,1}}^{\top} \mathbf{e}_{v_{r,1}}; \qquad \hat{s}_{u_{r,2}, v_{r,2}} = \mathbf{e}_{u_{r,2}}^{\top} \mathbf{e}_{v_{r,2}}$$
(12)



together with the self-augmented ranking task. Specifically, R' positive edges (observed in G) and R' negative edges (not observed in G) are sampled $\{(e_{1,1}, e_{1,2}), (e_{2,1}, e_{2,2}), ..., (e_{R',1}, e_{R',2})\}$, where $e_{r,1}$ and $e_{r,2}$ are individual positive and negative sample, respectively.

$$\mathcal{L} = \sum_{r=1}^{R'} \max(0, 1 - (p_{u_{r,1}, v_{r,1}} - p_{u_{r,2}, v_{r,2}})) + \lambda_1 \mathcal{L}_{sa} + \lambda_2 \|\Theta\|_{F}^{2}$$
 (13)

Table 1: Statistical information of the experimental datasets.

Stat.	Yelp	Gowalla	Tmall		
# Users	29601	50821	47939		
# Items	24734	24734	41390		
# Interactions	1517326	1069128	2357450		
Density	2.1×10^{-3}	4.0×10^{-4}	1.2×10^{-3}		

Table 2: Performance comparison on Yelp, MovieLens, Amazon datasets in terms of Recall and NDCG.

Data	Metric	BiasMF	NCF	AutoR	GCMC	PinSage	NGCF	STGCN	LightGCN	GCCF	DGCF	HyRec	DHCF	MHCN	SLRec	SGL	SHT	p-val.
	Recall@20	0.0190	0.0252	0.0259	0.0266	0.0345	0.0294	0.0309	0.0482	0.0462	0.0466	0.0472	0.0449	0.0503	0.0476	0.0526	0.0651	9.3e ⁻⁷
Yelp	NDCG@20	0.0161	0.0202	0.0210	0.0251	0.0288	0.0243	0.0262	0.0409	0.0398	0.0395	0.0395	0.0381	0.0424	0.0398	0.0444	0.0546	9.1e ⁻⁸
тегр	Recall@40	0.0371	0.0487	0.0504	0.0585	0.0599	0.0522	0.0504	0.0803	0.0760	0.0774	0.0791	0.0751	0.0826	0.0821	0.0869	0.1091	4.1e ⁻⁷
	NDCG@40	0.0227	0.0289	0.0301	0.0373	0.0385	0.0330	0.0332	0.0527	0.0508	0.0511	0.0522	0.0493	0.0544	0.0541	0.0571	0.0709	2.2e ⁻⁷
	Recall@20	0.0196	0.0171	0.0239	0.0301	0.0576	0.0552	0.0369	0.0985	0.0951	0.0944	0.0901	0.0931	0.0955	0.0925	0.1030	0.1232	5.3e ⁻⁷
Gowalla	NDCG@20	0.0105	0.0106	0.0132	0.0181	0.0373	0.0298	0.0217	0.0593	0.0535	0.0522	0.0498	0.0505	0.0574	0.0581	0.0623	0.0731	6.3e ⁻⁷
Cowana	Recall@40	0.0346	0.0216	0.0343	0.0427	0.0892	0.0810	0.0542	0.1431	0.1392	0.1401	0.1306	0.1356	0.1393	0.1305	0.1500	0.1804	1.5e ⁻⁷
	NDCG@40	0.0145	0.0118	0.0160	0.0212	0.0417	0.0367	0.0262	0.0710	0.0684	0.0671	0.0669	0.0660	0.0689	0.0680	0.0746	0.0881	3.2e ⁻⁷
	Recall@20	0.0103	0.0082	0.0103	0.0103	0.0202	0.0180	0.0146	0.0225	0.0209	0.0235	0.0233	0.0156	0.0203	0.0191	0.0268	0.0387	4.3e-9
Tmall	NDCG@20	0.0072	0.0059	0.0072	0.0072	0.0136	0.0123	0.0105	0.0154	0.0141	0.0163	0.0160	0.0108	0.0139	0.0133	0.0183	0.0262	4.9e-9
Iman	Recall@40	0.0170	0.0140	0.0174	0.0159	0.0345	0.0310	0.0245	0.0378	0.0356	0.0394	0.0350	0.0261	0.0340	0.0301	0.0446	0.0645	4.0e ⁻⁹
	NDCG@40	0.0095	0.0079	0.0097	0.0086	0.0186	0.0168	0.0140	0.0208	0.0196	0.0218	0.0199	0.0145	0.0188	0.0171	0.0246	0.0352	3.5e ⁻⁹

Table 3: Ablation study on key components of SHT.

Catagoni	Data	Ye	elp	Gov	valla	Tmall			
Category	Variants	Recall	NDCG	Recall	NDCG	Recall	NDCG		
Local	-Pos	0.0423	0.0352	0.0816	0.0487	0.0218	0.0247		
	-Trans	0.0603	0.0504	0.0999	0.0608	0.0321	0.0206		
Clabal	-DeepH	0.0645	0.0540	0.1089	0.0634	0.0347	0.0234		
Global	-HighH	0.0598	0.0497	0.1091	0.0646	0.0336	0.0227		
	-Hyper	0.0401	0.0346	0.0879	0.0531	0.0209	0.0144		
SAL	-Meta	0.0615	0.0526	0.1108	0.0717	0.0375	0.0255		
	-SAL	0.0602	0.0519	0.1099	0.0699	0.0363	0.0251		
SH	İT	0.0651	0.0546	0.1232	0.0731	0.0387	0.0262		

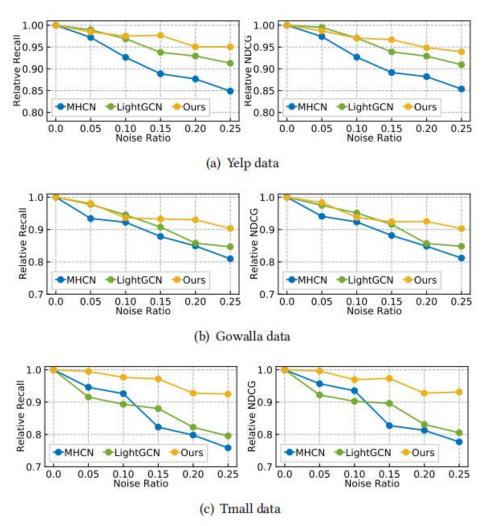
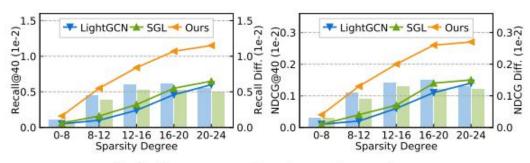
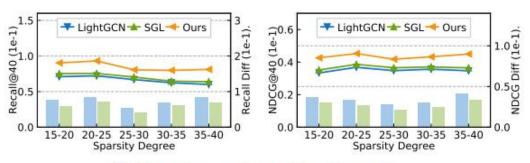


Figure 3: Relative performance degradation w.r.t noise ratio.



(a) Performance w.r.t. item interaction numbers



(b) Performance w.r.t. user interaction numbers

Figure 4: Performance w.r.t. different data sparsity degrees on Gowalla data. Lines present Recall@40 and NDCG@40 values, and bars shows performance differences between baselines and our SHT with corresponding colors.

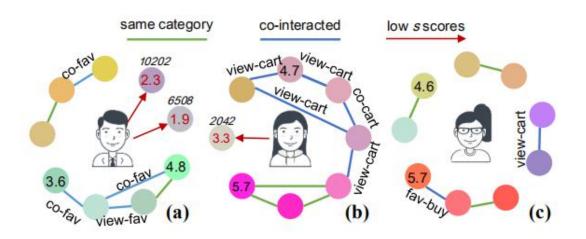


Figure 5: Case study on inferring implicit item-wise relations and discriminating potential noise edges. Circles denote items interacted by the centric users, and their learned embeddings are visualized with colors. Implicit item-wise relations not utilized during model training are presented by green and blue lines. The type of co-interactions are also labeled (e.g., view-cart denotes viewed and added-to-cart by same users). Also, the inferred solidity scores s are shown on the circles, where red values are anomalously low scores indicating noisy edges.

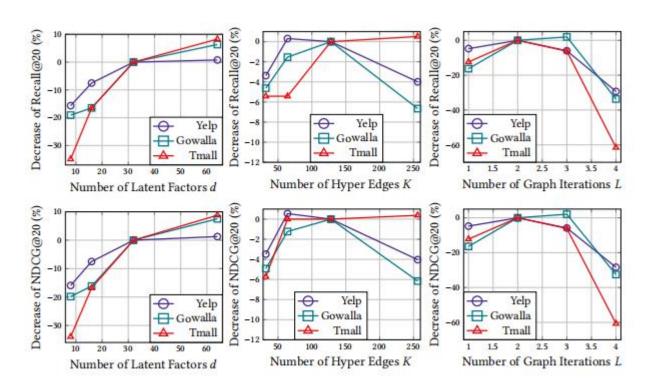


Figure 6: Hyperparameter study of the SHT.

Algorithm 1: Learning Process of SHT Framework

Input: user-item interaction graph \mathcal{G} , number of graph layers L, number of edges to sample R, R', maximum epoch number E, learning rate η

```
Output: trained parameters in \Theta
```

```
1 Initialize all parameters in Θ
```

```
2 for e = 1 to E do
```

- 3 Draw a mini-batch U from all users {1, 2, ..., I}
- Calculate the graph topology-aware embeddings E
- Generate input embeddings $\tilde{\mathbf{E}}_0$ for hypergraph transformer
- for l = 1 to L do
- 7 Conduct node-to-hyperedge propagation to obtain
 - $\tilde{\mathbf{Z}}^{(u)}, \tilde{\mathbf{Z}}^{(v)}$ for both users and items
- 8 Conduct hierarchical hyperedge feature
 - transformation for $\hat{\mathbf{Z}}^{(u)}, \hat{\mathbf{Z}}^{(v)}$
- Propagate information from hyperedges back to user/item nodes to obtain $\tilde{\mathbf{E}}_{l}^{(u)}$, $\tilde{\mathbf{E}}_{l}^{(v)}$
- 10 end
- Aggregate the iteratively propagated embeddings to get
- Sample R edge pairs for self-augmented learning
- Acquire the user/item transformation function $\phi^{(u)}$ and $\phi^{(v)}$ with the meta network
- Conduct user/item embedding transformations using $\phi(\cdot)$ to get $\Gamma^{(u)}$, $\Gamma^{(v)}$
- 15 Calculate the solidity score s for the R edge pairs
- Calculate the solidity predictions ŝ for the R edge pairs
- 17 Compute loss L_{sa} for self-augmented learning according to Eq 12
- 18 Sample R' edge pairs for the main task
- Calculate the pair-wise marginal loss £ according to Eq 13
- for each parameter $\theta \in \Theta$ do
- $\theta = \theta \eta \cdot \partial \mathcal{L}/\partial \theta$
- 22 end
- 23 end
- 24 return all parameters Θ

